

Abstract

Software Defined Networking (SDN) is the

new emerging field in the era of information

technology. The SDN is more flexible and

programmable than the traditional network. The one

of the important usages of SDN is the server load

balancing strategy. The load on the servers is

increasing as day by day with the internet usage.

Therefore, there is a need to balance these load on

servers in order to provide efficient services to end

users without any delay. In our proposed system,

Random, Round Robin and Weighted Round Robin

load balancing strategies are implemented using an

OpenFlow switch connected to a POX controller that

are based on python in SDN.

1. Introduction

The load balancing method plays as the

significant role in network. The load balancing

network is divided into server and link load balancing

methods. This system proposes the server load

balancing method. In this system, the central load

balancer is connected to each several target servers

and hosts. This load balancer will receive the requests

from multiple clients. Depending upon the various

load balancing strategy, the purpose of the load

balancer is to forward these incoming requests of the

client to different servers. The SDN load balancer

provides the facility to the programmers to build and

design own load balancing strategy. Another strong

point is that it does not require any separate hardware

that behaves as a load balancer [5].

Software Defined Networking (SDN) provides

a different approach in network design and

management. It decouples the distributed control

plane from the data plane and moves the control

plane to the centralized controller. Thus, the

controller has a complete view of the network

topology plus the full control of network resources.

Together with the controller’s programmability, SDN

offers efficient and flexible ways to deliver

networking functions [4].

As the basic network device in data layer,

OpenFlow enabled switch is used to implement data

transmission function according to flow-tables

allocated from controller [1]. Being as the “brain” of

SDN, controller acquires application information

from upper layer through the northbound interface.

Flow-tables are generated in controller and allocated

to OpenFlow switch through OpenFlow protocol. By

acquiring network topology information, SDN

controller provides the global network view for

OpenFlow switch and implements the flexible

network configuration and network management. As

with traditional network, link redundancy technology

in SDN can effectively solve the problems of

network congestion and provide the robustness and

stability for network. By evenly distributing traffic

among multiple paths, load balance can be achieved

in SDN.

The paper is organized as follows. Section 2

reviews the existing traditional load balancing

schemes and introduces the overview of SDN and

OpenFlow Protocol. Load balancing strategies are

described in Section 3. Section 4 describes the

architecture of proposed load balancer. Section 5

shows execution of the system. Section 6 covers

experimental results and Section 7 contains

conclusion and future work.

2. Related works

In the recent year, a single server is unable to

handle all of the requests from the clients because of

the large amount of traffic. So, it needs to balance the

load traffic. The main purpose of load balancer is to

distribute the load traffic of servers. The traditional

load balancer are used to these problem but main

problem with these load balancers are non-

programmable, expensive hardware. Now a days

SDN load balancer are used. Openflow dumb device

can be converted into strong load balancer by

creating SDN application (such as load balancer).

Kaur et al. proposed load balancing strategy

that balance the load traffic in round robin algorithm.

The capacity of server is not considered in this

strategy as show in Figure 1. But the server capacity

is necessary in reality because the capacity of server

may vary from one server to the other. Because it

couldn’t happen that new server and old server have

same capacity and speed.

Server Load Balancing in Software Defined Networking

Arkar Soe Linn, Su Hlaing Win, Su Thawda Win

arkarsoelinn2015@gmail.com, suhlaingct1995@gmail.com, stdwthawda@gmail.com

University of Computer Studies, Mandalay, Myanmar

261

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

mailto:arkarsoelinn2015@gmail.com
mailto:suhlaingct1995@gmail.com
mailto:stdwthawda@gmail.com

Figure 1. Round Robin Load Balancer

 The proposed system solved this problem. In

this paper, the Weighted Round Robin Load

Balancing strategy is implemented. According to the

different capacity of the servers, the different

weighted are assigned to each server. The server with

the highest weight handle more requests than the

other servers.

2.2. SDN Overview

Software Defined Networking (SDN) is an

emerging network architecture where network control

is decoupled from forwarding plane and it is

programmable. By centralizing the control plane, it

expanded the possibility of network intelligence by

having complete network visibility. The network

infrastructure can be smartly utilized and

performance of network have great opportunity for

optimization [4].

In SDN, the network devices only implement

the data plane. They accept instructions from the

SDN controller through the OpenFlow and other

southbound protocols for data forwarding. This

reduces complexity of the network devices as

forwarding devices no longer required to understand

and implement the control plane. Figure 2 shows the

SDN network architecture.

SDN tries to improve the current networks.

Bellow there is a list of the main advantages of the

SDN.

 It becomes easier to program the applications

since the abstractions provided by the control

platform and/or the network programming

languages can be shared.

 All applications can take advantage of the same

network information, leading to more consistent

and effective policy decisions while re-using

control plane software modules.

 All applications can take actions (i.e.,

reconfigure forwarding devices) from any part of

the network. There is no need to devise a precise

strategy about the location of the new

functionality.

 The integration of different applications becomes

more straightforward. For instance, load

balancing and routing applications can be

combined sequentially, with load balancing

decisions having precedence over routing

policies.

Figure 2. The architecture of SDN
kkkl

2.3. OpenFlow Protocol

The OpenFlow protocol is the popular

southbound protocol used for the communications

between the controllers and the network elements.

The OpenFlow is also the first standard comm-

unication protocol defined between the control layer

and the infrastructure layer in SDN architecture [3,

2]. It manages the switches in the network and allows

an external entity like the controller to manipulate the

flow of packets through the network. Openflow was

designed as a tool focused on network research.

The Openflow architecture consists of three

basic concept. (1) The network is built up by

Openflow-compliant switches that compose the data

plane; (2) the control plane consists of one or more

Openflow controllers; (3) a secure control channel

connects the switches with the control plane. All

switched have tables showing the ingress and egress

paths of a packet for that switch. Openflow makes

use of this property and makes these tables accessible

by the controller. An Openflow switch will receive its

flow table entries and deletion from the controller

through a secure channel.

When a new packet arrives to an Openflow

switch, it will look into the flow table to find a match.

If there is no match in the table, the packet will be

sent to the controller. The controller processes the

packet and marks the packet with an action like:

 Add a new flow for similar incoming packets

 Drop similar packets

 Tag with a queue ID

2.4. The SDN Controllers

The controller or network operating system is

the heart of the SDN, which is responsible for

controlling and managing all the OpenFlow switches

[2]. Some of the SDN controllers used widely in

academia and industry [3] are summarized as

follows:

NOX is an open source development platform

for C++ based Software-Defined Networking (SDN)

control applications. It is developed by Nicria.

262

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

Floodlight Open SDN Controller is an

enterprise-class, Apache-licensed, Java-based

OpenFlow Controller. It is supported by a community

of developers including a number of engineers from

Big Switch Networks and based on Beacon

Controller.

Ryu is originated from NTT in Japan. Ryu is

based python and it is simple and easy to use.

OpenDaylight and floodlight is based JAVA

and has two major technical characteristics. One is

the use of OSGi architecture and the other is the

introduction of SAL.

POX is an open source SDN Controller whose

modules are implemented in python language. In

the proposed system, POX Controller is used to

balance the load traffic of servers.

3. Load Balancing Strategies

Random Strategy: One of the simplest algorithms

and still very effective is the random load balancing.

The switch is connected to the controller over a

secured connection using SSL and uses port 6633 on

the controller to exchange Open Flow packets. Once

the packets start flowing into the controller via the

switch the algorithm starts assigning the servers IP

and Ethernet address to each connection. It uses a

random function which returns a value that is in the

range of the number of servers online.

Round-Robin Strategy: Round Robin is easy to

implement and understand. The round robin policy

uses a circular queue to decide where to send a

request. It means that this method continuously

rotates a list of services that are attached to it. When

the virtual server receives a request, it assigns the

connection to the first service in the list, and then

moves that service to the bottom of the list.

Weighted Round-Robin Strategy: The Weighted

Round Robin is similar to the Round Robin in a sense

that the manner by which requests are assigned to the

nodes is still cyclical, albeit with a twist. In this

strategy, each server receives the request from the

client based on criteria that are fixed by the site

administrator. When setting up the load balancer, it

needs to assign the "weights" to each node. In other

words, a static weight is assigned to each server in

Weighted Round Robin (WRR) policy. It is usually

specified weights in proportion to actual capacities.

For example, if server 1's capacity is 5 times more

than server 2's, then it assigns a weight of 5 to server

1 and weight of 1 to server 2. In our system, servers’

weight are assigned by using the capacity of the

server, such as 1 for server 1, 3 for server 2 and 5 for

server 3. The weighted round robin scheduling is

better than the round robin scheduling when the

processing capacity of servers are different.

4. Architecture of Load Balancer

In the architecture of load balancer, the load

balancer is connected to the several target servers.

The load balancer receive the requests from the client

and redirect to the target servers based on load

balancing algorithm that are configured by the

administrator [6]. Figure 3. Show the architecture of

load balancer. The load balancing system consists of

Openflow switch connected to the POX controller

and multiple server that are connected through the

Openflow switch’s ports. The static IP addresses are

assigned to each server and the live servers IP are

maintained in POX controller. The POX controller

has a virtual IP address.

All of the clients’ requests are redirect to the

virtual IP address. When the request packets are

dispatched to the virtual IP, information that are

contained in the packet header, Openflow switch uses

this information and contract this information with

the stored information in flow entries of switch. If the

flow table entries matches with the client’s packet

header information then based on the load balancing

strategy, switch modifies the destination virtual IP

address to the address of one of the servers and

forward these packets to that particular server. If the

flow table does not match with any header

information, then the Openflow switch redirect these

packets to the POX controller.

With the help of OpenFlow table, the

controller inserts new flow entries to the switch’s

flow table. To implement load balancing application,

python modules are written and that are executed by

the POX controller.

Figure 3. Load balancer architecture in SDN

5. Execution

The following software and tools were helpful

in order to execute the functionality of the load

balancer:

OracleVM – It is a powerful virtualization product

for enterprise as well as home use. Not only is virtual

box an extremely feature rich, high performance

product for enterprise customers, it is also the only

professional solution that is freely available as open

source software under the terms of the GNU General

Public License (GPL) version 2.

263

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

Emulation Tool – Mininet is an emulation tool

written in Python and C that allows to run a number

of virtual hosts, controllers, switches, and links. It is

widely used in open source network emulation

environment. It uses container based virtualization to

make a single system act as a complete network. It is

a simple, robust and inexpensive network tool to

develop and test Open Flow based applications. It is

the Built-in component of Open vSwitch, and

OpenFlow capable switch. Mininet can create a

complex network topology for testing purposes,

without configuring the physical networks. It can

support custom topologies. It supports simple and

extensible Python API for network creation and

testing. Mininet combines the desirable features of

simulators, test beds and emulators.

Controllers – In this proposed system, the POX

controller is used for the central controller of entire

network. The POX controller is a rewrite of the NOX

controller and can be used on various platforms.

Initially, POX was also published under the GPL, but

has been available under the Apache Public License

(APL) since November, 2013. POX is an open source

development platform for Python-based software-

defined networking (SDN) control applications, such

as Open Flow SDN controllers. POX controller

provides an efficient way to implement the Open

Flow protocol which is the de facto communication

protocol between the controllers and the switches. It

can support the OpenFlow protocol version 1.0.

Testing Tool – In this experiment, OpenLoad testing

tool is used to load balancing strategies. OpenLoad is

an open source tool that can be tested based on

parameter like Response Time and Number of

Transactions that are executed per sec. The Weighted

Round Robin and Round Robin load balancing

strategies are compared in this paper.

6. Experimental Setup and Results

Load balancing topology consist of 1

OpenFlow POX controller (c0), 1 OpenFlow switch

(s1), 16 clients (h1,h2,….,h16) and Server 1, Server

2, Server 3 are used as simple 3 web servers. Load

balancer consists of service IP (10.0.1.1) and clients

will dispatch the requests to the service IP. The

address that is specified to load balancer was service

IP. It is responsibility of load balancer that the

incoming request of the client is redirected to the

server depending upon the strategies that are

implemented in load balancer. Figure 4, 5 and 6 show

the output after implementing three load balancing

strategies in proposed software defined networking.

Moreover, the access frequencies of different

clients are usually not the same in the real world. So

we set up three different access frequencies, such as

(1) 10 clients send a service request to the server

continuously; (2) 13 clients send a request to the

server continuously; and (3) 16 clients send a request

to the server continuously. Figure 7, 8, and 9

illustrate the servers’ response time for a period after

the concurrent accesses under the three situations

respectively. In the first case, 10 clients request the

service simultaneously, the average server’s response

time of Round Robin and Weighted Round Robin are

0.233 s and 0.186 s respectively.

In the second case, 13 clients request the

service simultaneously, the average server’s response

time of Round Robin and Weighted Round Robin are

0.317 s and 0.252 s respectively.

In the third case, the average server’s response

time of the two schemes, Round Robin and Weighted

Round Robin are 0.404 s and 0.315 s respectively. In

comparison of three case, the average server response

times of Weighted Round Robin is smaller than the

Round Robin. So Weighted Round Robin strategy is

effective than Round Robin strategy.

Figure 4. Random load balancing

Figure 5. Round robin load balancing

Figure 6. Weighted round robin load balancing

264

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

Figure 7. The server’s response time of 10 clients

simultaneously send requests

Figure 8. The server’s response time of 13 clients

simultaneously send requests

Figure 9. The server’s response time of 16 clients

simultaneously send requests

7. Conclusion and Future Work

Traditional networking has relied upon

distributed control logic which limits its agility. The

routers and switches need to keep itself updated by

periodically refreshing its flow table and network

map by communicating with surrounding devices. In

order to solve the problems of lower efficiency and

higher deployments cost of load balancing in the

traditional networks, this paper proposes a Weighted

Round Robin load balancing under the SDN

architecture.

Short coming of our task is that only POX

controller was used to test our code. Any other

controllers don’t be taken into account. The servers

load balancing based on the servers’ response times

can be configured on the POX controller for a further

extension.

References

[1] Cui Chen-xixo, Xu Ya-bin, Research on Load Balacne

Method in SDN: International Journal of Grid and

Distributed Computing, Vol 9. No. 1(2016), pp. 25-36.

[2] C. Rotsos, N. Sarrar, S. Uhlig, et al., OFLOPS: An

open framework for OpenFlow switch evaluation, in:

Passive and Active Measurement, Springer, Berlin,

Heidelberg, 2012, pp. 85–95.

[3] D.B. Hoang, M. Pham, On software-defined

networking and the design of SDN controllers, in:

2015 6th International Conference on the Network of

the Future, (NOF), IEEE, 2015, pp. 1–3.

[4] Gaurav, Server and Network Load Balancing in SDN

Content Delivery Data Center Network: Bachelor of

Engineering in Computer Science, M.D.U, Rohtak

India, June 2010.

[5] Hong Zhong, Yaming Fang, Jie Cui, LBBSRT: An

efficient SDN load balancing scheme based on server

response time: Future Generation Computer Systems

68(2017) pp. 183-190.

[6] Marti Boada Navarro, Dyanmic Load Balancing in

Software Defined Networks: 10th semester, Network

and Distributed System, June, 2014.

265

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

